设函数f(x)=x(x-1)(x-a),(a>1)(1)求导数f′(x)并证明f(x)有两个不同的极值点x1,x2;(2
设函数f(x)=x(x-1)(x-a),(a>1)(1)求导数f′(x)并证明f(x)有两个不同的极值点x1,x2;(2)若不等式f(x1)+f(x2)≤0成立,求a的取...
设函数f(x)=x(x-1)(x-a),(a>1)(1)求导数f′(x)并证明f(x)有两个不同的极值点x1,x2;(2)若不等式f(x1)+f(x2)≤0成立,求a的取值范围.
展开
2个回答
展开全部
(1)f'(x)=3x2-2(1+a)x+a.
令f'(x)=0得方程
3x2-2(1+a)x+a=0.
因△=4(a2-a+1)≥4a>0,故方程有两个不同实根x1,x2
不妨设x1<x2,由f'(x)=3(x-x1)(x-x2)可判断f'(x)的符号如下:
当x<x1时,f'(x)>0;
当x1<x<x2时,f'(x)<0;
当x>x2时,f'(x)>0
因此x1是极大值点,x2是极小值点.
(2)因f(x1)+f(x2)≤0,故得不等式x13+x23-(1+a)(x12+x22)+a(x1+x2)≤0.
即(x1+x2)[(x1+x2)2-3x1x2]-(1+a)[(x1+x2)2-2x1x2]+a(x1+x2)≤0.
又由(I)知
代入前面不等式,两边除以(1+a),并化简得
2a2-5a+2≥0.
解不等式得a≥2或a≤
(舍去)
因此,当a≥2时,不等式f(x1)+f(x2)≤0成立.
令f'(x)=0得方程
3x2-2(1+a)x+a=0.
因△=4(a2-a+1)≥4a>0,故方程有两个不同实根x1,x2
不妨设x1<x2,由f'(x)=3(x-x1)(x-x2)可判断f'(x)的符号如下:
当x<x1时,f'(x)>0;
当x1<x<x2时,f'(x)<0;
当x>x2时,f'(x)>0
因此x1是极大值点,x2是极小值点.
(2)因f(x1)+f(x2)≤0,故得不等式x13+x23-(1+a)(x12+x22)+a(x1+x2)≤0.
即(x1+x2)[(x1+x2)2-3x1x2]-(1+a)[(x1+x2)2-2x1x2]+a(x1+x2)≤0.
又由(I)知
|
代入前面不等式,两边除以(1+a),并化简得
2a2-5a+2≥0.
解不等式得a≥2或a≤
1 |
2 |
因此,当a≥2时,不等式f(x1)+f(x2)≤0成立.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询