函数的有界性不唯一怎么理解?函数的有界性,是不是就相当于有最大值
1个回答
2016-10-27
展开全部
应该意思就是说,有界函数的上界和下界都不是唯一的。是这个意思吧。
函数的上界的定义:如果函数f(x)始终满足f(x)≤m(m是常数)那么m就称为f(x)的上界。
函数的下界的定义:如果函数f(x)始终满足f(x)≥n(n是常数)那么n就称为函数的下界。
由上界和下界的定义可知,如果一个函数有f(x)≤m始终成立,那么f(x)≤m+1也必然始终成立,所以m+1也符合f(x)的上界的定义,此外m+2,m+0.4,m+100等等有无数个满足f(x)上界定义的数,所以这些数都是f(x)的上界。
同理,如果f(x)≥n始终成立,那么f(x)≥n-1也必然成立,所以n-1也符合f(x)下界的定义,此外n-2,n-4,n-0.2等等也有无数个满足f(x)下界定义的数,所以这些数都是f(x)的下界。
因此f(x)如果有上界和下界,则上界和下界不是唯一的,是各有无数个的。
而上界中,最小的那个,被称为上确界;下界中,最大的那个,被称为下确界。
上确界和下确界才是唯一的。
函数的上界的定义:如果函数f(x)始终满足f(x)≤m(m是常数)那么m就称为f(x)的上界。
函数的下界的定义:如果函数f(x)始终满足f(x)≥n(n是常数)那么n就称为函数的下界。
由上界和下界的定义可知,如果一个函数有f(x)≤m始终成立,那么f(x)≤m+1也必然始终成立,所以m+1也符合f(x)的上界的定义,此外m+2,m+0.4,m+100等等有无数个满足f(x)上界定义的数,所以这些数都是f(x)的上界。
同理,如果f(x)≥n始终成立,那么f(x)≥n-1也必然成立,所以n-1也符合f(x)下界的定义,此外n-2,n-4,n-0.2等等也有无数个满足f(x)下界定义的数,所以这些数都是f(x)的下界。
因此f(x)如果有上界和下界,则上界和下界不是唯一的,是各有无数个的。
而上界中,最小的那个,被称为上确界;下界中,最大的那个,被称为下确界。
上确界和下确界才是唯一的。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询