如何根据特征向量和特征值求矩阵

 我来答
帐号已注销
2019-05-26 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15万
展开全部

对于特征值λ和特征向量a,得到Aa=aλ

于是把每个特征值和特征向量写在一起

注意对于实对称矩阵不同特征值的特征向量一定正交

得到矩阵P,再求出其逆矩阵P^(-1)

可以解得原矩阵A=PλP^(-1)

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。

一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。 

反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。

扩展资料:

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组。

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

在A变换的作用下,向量ξ仅仅在尺度上变为原来的λ倍。称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量,当然,其他理论领域也有这一现象。

参考资料来源:百度百科——特征值

参考资料来源:百度百科——特征向量

一个人郭芮
高粉答主

2017-09-13 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84689

向TA提问 私信TA
展开全部
首先记住基本公式,
对于特征值λ和特征向量a,得到Aa=aλ
于是把每个特征值和特征向量写在一起
注意对于实对称矩阵不同特征值的特征向量一定正交
得到矩阵P,再求出其逆矩阵P^(-1)
可以解得原矩阵A=PλP^(-1)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2023-05-18
展开全部

根据特征向量和特征值求矩阵的过程如下:1. 确定特征向量和特征值假设矩阵A是n阶方阵,特征值为λ1,λ2,…,λn,对应的特征向量为x1,x2,…,xn。2. 构造特征矩阵将n个特征向量x1,x2,…,xn组成矩阵X=[x1,x2,…,xn],这个矩阵就是特征矩阵。3. 根据特征值构造对角矩阵将特征值按照从大到小的顺序排列,并构造对角矩阵D=[λ1 0 … 0; 0 λ2 … 0; … ; 0 0 … λn],其中对角线上的元素就是特征值。4. 求解矩阵矩阵A就可以表示为A=XDX^-1,其中X^-1是特征矩阵X的逆矩阵。通过这个方法可以求出矩阵的特征值和特征向量,并且可以将矩阵表示为特征矩阵、对角矩阵和特征矩阵的逆矩阵的乘积形式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
夏日悸动的旋律
高粉答主

2019-12-21 · 关注我不会让你失望
知道答主
回答量:7.8万
采纳率:13%
帮助的人:4948万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式