高数二重积分 面积的计算红线部分为什么y
1个回答
展开全部
设f(t)=t(1-2t)(1-3t) t∈[0,1]
不妨设 f(t)=t(1-2t)(1-3t)≥a(3t-1) 在[0,1]恒成立,先确定a
因为所求不等式在 x=y=z=1/3时取等
故f(t)=t(1-2t)(1-3t)-a(3t-1)在t=1/3时取极小值,导数为0
故 18t^2-10t+1-3a=0 有一个根为x1=1/3,故 x2=2/9, a=25/81
所以g(t)在[0,2/9],[1/3,1]单调增加,在[2/9,1/3]单调减小
所以g(t)在[0,1]上的最小值为 min{g(0),g(1/3)}=0
所以 x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)
=f(x)+f(y)+f(z)
不妨设 f(t)=t(1-2t)(1-3t)≥a(3t-1) 在[0,1]恒成立,先确定a
因为所求不等式在 x=y=z=1/3时取等
故f(t)=t(1-2t)(1-3t)-a(3t-1)在t=1/3时取极小值,导数为0
故 18t^2-10t+1-3a=0 有一个根为x1=1/3,故 x2=2/9, a=25/81
所以g(t)在[0,2/9],[1/3,1]单调增加,在[2/9,1/3]单调减小
所以g(t)在[0,1]上的最小值为 min{g(0),g(1/3)}=0
所以 x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)
=f(x)+f(y)+f(z)
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询