选A。
全微分若存在,偏导数必须存在;
而反之偏导数都存在,全微分不一定存在
所以二者的关系是全微分存在是偏导数连续的。
充分不必要条件,那么反之偏导数连续是全微分存在的必要不充分条件,选择A。
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
2024-04-02 广告
选A。
而反之偏导数都存在,全微分不一定存在
所以二者的关系是全微分存在是偏导数连续的。
充分不必要条件,那么反之偏导数连续是全微分存在的必要不充分条件,选择A。
导数和偏导数的区别:
一、定义不同
导数,是对含有一个自变量的函数进行求导。
偏导数,是对含有两个自变量的函数中的一个自变量求导。
二、几何意义不同
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
而反之偏导数都存在
全微分不一定存在
所以二者的关系是
全微分存在是偏导数连续的
充分不必要条件
那么反之偏导数连续是全微分存在的必要不充分条件,选择A
可微和偏导数存在的关系是,可微可以推出偏导数存在,而偏导数存在推不出可微,所以偏导数存在是可微的必要条件;
可微可以推出全微分存在,但反过来不成立。
反之不成立,所以应该是A。