设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)=0
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明存在c∈(a,b)使f‘(c)+f(c)=0若要证f‘(c)+[f(c)]^2=0...
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f ‘(c)+f(c)=0
若要证f ‘(c)+[f(c)]^2=0 展开
若要证f ‘(c)+[f(c)]^2=0 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询