已知双曲线C:X^2-Y^2=1和直线l:y=kx-1,若L与C交于A,B两点,o为原点, 三角形AOB面积为根号2,求K
2个回答
展开全部
y=kx-1
x^2-y^2=1
x^2-(kx-1)^2=1
(1-k^2)x^2+2kx-2=0
x1+x2=2k/(k^2-1)
x1x2=2/(k^2-1)
1/2AB*h
kx-y-1=0
1/(k^2+1)^1/2
(x1-x2)^2+(y1-y2)^2=(1+k^2)(x1-x2)^2=(1+k^2)((x1+x2)^2-4x1x2)=(1+k^2)(4k^2/(k^2-1)^2-8(k^2-1)
1/2ABh=2^1/2
1/4AB^2h^2=2
AB^2h^2=8
1/(k^2+1)*(1+k^2)(4k^2/(k^2-1)^2-8(k^2-1))=8
4k^2/(k^2-1)^2-8(k^2-1)=8
k^2/(k^2-1)^2-2(k^2-1)=2
k^2-2(k^2-1)^3=2
x^2-y^2=1
x^2-(kx-1)^2=1
(1-k^2)x^2+2kx-2=0
x1+x2=2k/(k^2-1)
x1x2=2/(k^2-1)
1/2AB*h
kx-y-1=0
1/(k^2+1)^1/2
(x1-x2)^2+(y1-y2)^2=(1+k^2)(x1-x2)^2=(1+k^2)((x1+x2)^2-4x1x2)=(1+k^2)(4k^2/(k^2-1)^2-8(k^2-1)
1/2ABh=2^1/2
1/4AB^2h^2=2
AB^2h^2=8
1/(k^2+1)*(1+k^2)(4k^2/(k^2-1)^2-8(k^2-1))=8
4k^2/(k^2-1)^2-8(k^2-1)=8
k^2/(k^2-1)^2-2(k^2-1)=2
k^2-2(k^2-1)^3=2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询