高斯算法 多项式求和问题 1+2+3+4+5+6+.+100?

 我来答
户如乐9318
2022-10-04 · TA获得超过6654个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:139万
展开全部
首先数列是等差数列,通项公式为an=a1+(n-1)*d.
最关键的关系是:【 这个必须理解】
等差数列每一项是前一项加公差d,项数之差乘以公差就是对应的两项之间的实际差额.

1.
因此,an与a1之间相差的数目为,二者分别对应的项数n和1的差乘以公差d.
即an-a1=(n-1)*d,故得到an=a1+(n-1)*d,即你的第一个关系式【末项=首项+(项数-1)-公差】

2.由等差数列特征可知an-a1=(n-1)*d,故(an-a1)/d=n-1,得到n=[(an-a1)/d]+1,即你的第二个关系式【项数=(末项-首项)/公差+1】

3. 首项a1与末项an之间相差(n-1)个公差d,因此an-a1=(n-1)*d,故a1=an-(n-1)*d,即
第三个关系式应该是 【首项=末项-(末项数-1)*公差】

耐心解答,希望对你有帮助,望采纳.,1,高斯算法 多项式求和问题 1+2+3+4+5+6+.+100
等差数列和=(首项+未项)*相数/2
因为(1+100)+(2+99).
一共有50个101
所以结果就是50*101
因此可以看出 用 首项+未项=两两结合的和
乘以项数 是因为 用这么多项想加
除以2 因为两两结合 所以少了一半
------------------------------------------------------
我想知道:
1.末项=首项+(项数-1)-公差
2.项数=(末项-首项)/公差+1
3.首项=(末项-1)*公差
着3个是怎么推算出来的,,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式