已知关于x的方程kx平方减括号2k加1括号x加k等于零有两个不等相等的根x1x2当k=1时
展开全部
根据给定的方程:
kx² - (2k + 1)x + k = 0
把k = 1代入该方程可得:
x² - 3x + 1 = 0
该方程的解为:
x1 = \frac{3 - \sqrt{5}}{2},x2 = \frac{3 + \sqrt{5}}{2}
这两个根不相等。其中,\sqrt{5}是指5的正平方根。
因此,当k=1时,方程kx² - (2k + 1)x + k = 0的两个根是不相等的。具体来说,当k=1时,方程的解为x1 = \frac{3 - \sqrt{5}}{2},x2 = \frac{3 + \sqrt{5}}{2}。
kx² - (2k + 1)x + k = 0
把k = 1代入该方程可得:
x² - 3x + 1 = 0
该方程的解为:
x1 = \frac{3 - \sqrt{5}}{2},x2 = \frac{3 + \sqrt{5}}{2}
这两个根不相等。其中,\sqrt{5}是指5的正平方根。
因此,当k=1时,方程kx² - (2k + 1)x + k = 0的两个根是不相等的。具体来说,当k=1时,方程的解为x1 = \frac{3 - \sqrt{5}}{2},x2 = \frac{3 + \sqrt{5}}{2}。
展开全部
答案是0。 因为绝对值X1分之X2可以写成|X1-X2|,X2分之X1可以写成X2/X1,将它们带入公式得: |X1-X2| - X2/X1 因为绝对值的定义是:当X1>X2时,|X1-X2|=X1-X2;当X1<X2时,|X1-X2|=X2-X1。 所以当X1>X2时,|X1-X2|减去X2/X1相当于(X1-X2)-(X2/X1); 当X1<X2时,|X1-X2|减去X2/X1相当于(X2-X1)-(X2/X1)。 但是不管X1和X2的大小关系,都可以化简为: (X1-X2)-(X2/X1)=X1/X1-X2/X1-X2/X1=X1-X2-X2=(X1-X2)-X2 再利用相反数的性质,就可以化简为: (X1-X2)-X2=X1-2X2 因为这个式子中X1和X2的位置可以互换,所以同理得到: (X2-X1)-X1=X2-2X1 而X1-2X2和X2-2X1都等于-(X1-2X2),所以最终的结果必然是0。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
kx²-(2k+1)x+k=0
k=1
x²-3x+1=0
x₁+x₂=3
x₁x₂=-1
|x₂/x₁-x₁/x₂|
=|(x₂²-x₁²)/(x₁x₂)|
=|(x₂-x₁)(x₂+x₁)|/|x₁x₂|
=|x₂-x₁||x₁+x₂|/|-1|
=3√|x₂-x₁|²
=3√|(x₁+x₂)²-4x₁x₂|
=3√|3²-4×(-1)|
=3√|9+4|
=3√13
k=1
x²-3x+1=0
x₁+x₂=3
x₁x₂=-1
|x₂/x₁-x₁/x₂|
=|(x₂²-x₁²)/(x₁x₂)|
=|(x₂-x₁)(x₂+x₁)|/|x₁x₂|
=|x₂-x₁||x₁+x₂|/|-1|
=3√|x₂-x₁|²
=3√|(x₁+x₂)²-4x₁x₂|
=3√|3²-4×(-1)|
=3√|9+4|
=3√13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询