如图,be垂直ac, cf垂直ab, bm等于ac。 cn等于ab。 求证:(1)am等

 我来答
窦曜敖蕤
2020-02-01 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:27%
帮助的人:582万
展开全部
您好,楼主,下面是答案:
证明:1.∵BE⊥AC,CF⊥AB,
∴∠1+∠BMF=90°,∠2+∠CME=90°,
∵∠BMF=∠CME(对顶角相等)
∴∠1=∠2
在△ABM和△NCA中,
BM=AC,CN=AB,∠1=∠2
∴△ABM≌△NCA(SAS),
∴AM=AN;
2.证明:根据(1)可得△ABM≌△NCA,
∴∠3=∠N,
∵CF⊥AB,
∵∠4+∠N=90°,
∴∠3+∠4=90°,
即∠MAN=90°,
因此,AM⊥AN.
很高兴为您解答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式