设随机变量(x,y)的概率密度为f(x,y)=e^-y
1,求随机变量X的密度fX(x)
前两个X为大写,第三个为小写,其中第二个X是下标
2.求概率P(X+Y小于等于1)
3.fξ(x|η=y)
ξ为下标
4.P(ξ 展开
1、求随机变量X的密度fX(x),边沿分布
fX(x)={e^(-y);0<x<y;{0
2、概率密度函数f(x,y)在直线x=0,y=x,y=-x+1所围的三角形区域的二重度积分,结果是1+e^(-1)-2e^(-1/2)
3、条件分布,应该写成 fX(x|Y=y)而非fξ(x|η=y),表示Y=y的条件分布,按题目意思,此处y理解为某一常数,则fX(x|Y=y)=f(x,y)/fY(y)=e^(-y)/ye^(-y)=1/y;fY(y)=ye^(-y)随机变量Y的边沿分布。
4、条件概率,似应写成P(X<2|Y<1),也是积分计算:P(X<2|Y<1),=P{X<2,Y<1}/P(Y<1)
P{X<2,Y<1}为f(x,y)在直权线x=2,y=1,y=x所围区域积分,P(Y<1)为f(x,y)在直线y=x,y=1所围区域积分,在本题情况,两个区域的有效部分(即不为零部分)恰好相等,故积分值为1。概率意义是,随机点分布区域为0<x<y,有Y<1,则必有X<2矣。
例如:
∵P(X>2丨Y<4)=P(X>2,Y<4)/P(Y<4),内∴分别求出P(X>2,Y<4)、P(Y<4)即可得。
而,P(X>2,Y<4)=∫(2,4)dy∫(2,y)f(x,y)dx=∫(2,4)(y-2)e^(-y)dy=-(y-1)e^(-y)丨(y=2,4)=e^(-2)-3e^(-4)。
对P(Y<4),先求出Y的边缘分布容的密度函数,由定义,fY(y)=∫(0,y)f(x,y)dx=ye^(-y),y>0、fY(y)=0,y为其它。∴P(Y<4)=∫(0,4)fY(y)dy=∫(0,4)ye^(-y)dy=-(y+1)e^(-y)丨(y=0,4)=1-5e^(-4)。
扩展资料:
按照随机变量可能取得的值,可以把它们分为两种基本类型:
1、离散型
离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
2、连续型
连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
2024-08-26 广告