有关集合中的抽屉原理的一些疑惑。
据此原理表述:把m个元素任意放入n(n<m=个集合,则一定有一个集合至少有k个元素,k=m/n,或k=m/n的整数部分。假设我取6个元素,放入3个集合,每个集合的元素数分...
据此原理表述:把m个元素任意放入n(n<m=个集合,则一定有一个集合至少有k个元素,k=m/n,或k=m/n的整数部分。
假设我取6个元素,放入3个集合,每个集合的元素数分别以1,1,4排列,那么岂不是不符合这个原理了?
我刚高一,数学并不好,望各位能解释的通俗易懂点。 展开
假设我取6个元素,放入3个集合,每个集合的元素数分别以1,1,4排列,那么岂不是不符合这个原理了?
我刚高一,数学并不好,望各位能解释的通俗易懂点。 展开
2个回答
展开全部
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
抽屉原理
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
你的描述好像有问题“把m个元素任意放入n(n<m=个集合,则一定有一个集合至少有k个元素,k=m/n,或k=m/n的整数部分。”
http://baike.baidu.com/view/8899.htm?fr=aladdin 去好好吧原理先弄明白
抽屉原理
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
你的描述好像有问题“把m个元素任意放入n(n<m=个集合,则一定有一个集合至少有k个元素,k=m/n,或k=m/n的整数部分。”
http://baike.baidu.com/view/8899.htm?fr=aladdin 去好好吧原理先弄明白
展开全部
据此原理表述:把m个元素任意放入n(n<m=个集合,则一定有一个集合至少有k个元素,k=m/n,或k=m/n的整数部分。
【首先理解“至少”,这个词语的意思是“大于或等于”】
假设我取6个元素,放入3个集合,每个集合的元素数分别以1,1,4排列,那么岂不是不符合这个原理了?
【怎么不符合呢?4个元素的不是就大于6÷3=2了么?完全符合】
************************************************************************************
^__^真心祝你学习进步,如果你对这个答案有什么疑问,请追问,
另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!
如果有其他问题,欢迎向我求助。与本题无关的就请不要追问了。
答题不易呀。懂了记得选满意。
************************************************************************************
【首先理解“至少”,这个词语的意思是“大于或等于”】
假设我取6个元素,放入3个集合,每个集合的元素数分别以1,1,4排列,那么岂不是不符合这个原理了?
【怎么不符合呢?4个元素的不是就大于6÷3=2了么?完全符合】
************************************************************************************
^__^真心祝你学习进步,如果你对这个答案有什么疑问,请追问,
另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!
如果有其他问题,欢迎向我求助。与本题无关的就请不要追问了。
答题不易呀。懂了记得选满意。
************************************************************************************
追问
嗯 是我脑子短路了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询