如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO

如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为... 如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF. (1)求证:直线PA为⊙O的切线;(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长. 展开
 我来答
九州锦绣生辉6148
推荐于2016-03-17 · 超过68用户采纳过TA的回答
知道答主
回答量:147
采纳率:100%
帮助的人:65.2万
展开全部
(1)证明见解析;(2)EF 2 =4OD?OP,证明见解析;(3) .


试题分析:(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,从而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论;
(2)先证明△OAD∽△OPA,由相似三角形的性质得出OA与OD、OP的关系,然后将EF=2OA代入关系式即可;
(3)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,由勾股定理解出x的值,从而能求出cos∠ACB,再由(2)可得OA 2 =OD?OP,代入数据即可得出PE的长.
试题解析:(1)如图,连接OB,
∵PB是⊙O的切线,∴∠PBO=90°.
∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB.
又∵PO=PO,∴△PAO≌△PBO(SAS).
∴∠PAO="∠PBO=90°." ∴直线PA为⊙O的切线.

(2)EF 2 =4OD?OP,证明如下:
∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°.
∴∠OAD="∠OPA." ∴△OAD∽△OPA. ∴ ,即OA 2 =OD?OP.
又∵EF=2OA,∴EF 2 =4OD?OP.
(3)∵OA=OC,AD=BD,BC=6,∴OD= BC=3(三角形中位线定理).
设AD=x,
∵tan∠F= ,∴FD=2x,OA=OF=2x﹣3.
在Rt△AOD中,由勾股定理,得(2x﹣3) 2 =x 2 +3 2
解得,x 1 =4,x 2 =0(不合题意,舍去).∴AD=4,OA=2x﹣3=5.
∵AC是⊙O直径,∴∠ABC=90°.
又∵AC=2OA=10,BC=6,∴cos∠ACB= .
∵OA 2 =OD?OP,∴3(PE+5)=25.∴PE= .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式