
展开全部
(y'')^2 -y'=0
y'' = √y'
∫dy'/√y' = ∫dx
2√y' =x + C1
y'(1) = 1/4
2√(1/4) =1 + C1
C1=0
2√y' =x
y' = x^2/4
y = (1/4)∫ x^2 dx
=(1/12)x^3 + C2
y(1) =1/12
1/12 =1/12 +C2
=> C2=0
ie
y = (1/12)x^3
y'' = √y'
∫dy'/√y' = ∫dx
2√y' =x + C1
y'(1) = 1/4
2√(1/4) =1 + C1
C1=0
2√y' =x
y' = x^2/4
y = (1/4)∫ x^2 dx
=(1/12)x^3 + C2
y(1) =1/12
1/12 =1/12 +C2
=> C2=0
ie
y = (1/12)x^3
追问
这个式子的特征方程是?
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询