已知tanα,1/tanα是关于x的方程,x²-kx+k²-3=0的两个实根,且三π<α<7π/2,求cosα+sinα

nuidx_9199
2010-12-20
知道答主
回答量:18
采纳率:0%
帮助的人:0
展开全部
因为这两个根的积是1,根据根与系数的关系可以知道:k²-3 =1也就是说K=+-2 而当K还必须要求使本方程的判别式>=0,所以,k²-4(k²-3)>=0, -3k²+12>=0, K=+-2都能满足本方程的判别式=0,所以此方程的根 tanα,1/tanα 是相等 的。那么就是这个阿尔法角是一个13π/4 ,从而可求得解。为负根2。
百度网友3228dba
2010-12-20 · TA获得超过168个赞
知道答主
回答量:73
采纳率:0%
帮助的人:0
展开全部
由韦达定理,tanα*(1/tanα)=k²-3=1
k=2或-2
tanα+1/tanα=k
因为3π<α<7π/2,所以tanα>0,tanα+1/tanα=2,tanα=1
cosα+sinα=-√2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式