怎样证明从三角形重心连接三个顶点组成的三个三角形面积相等

 我来答
科创17
2022-05-27 · TA获得超过5906个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:175万
展开全部
如图:O是重心,
首先要说明的一点是,1、三角形的面积=边和边到顶点距离乘积的1/2
2、重点是三角形各边中线的交点
3、由于O点是三角形1和2的共同顶点,所以O点到AB间的高应该是三角形1和2的AF和BF上的高,即同顶点上三角形底边上的高是相同的
证明:由于AF=BF,所以S1=S2(底边上的高相同),S1+S4+S5=S2+S3+S6;因而得S3+S6=S4+S5
又因AE=EC,所以S4=S5,同样可得S1+S2=S3+S6
故:S1+S2=S3+S6=S4+S5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式