证明 两个角平分线相等的三角形为等腰三角形 是真命题

 我来答
黑科技1718
2022-08-17 · TA获得超过5883个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.3万
展开全部
三角形ABC中 角平分线AD和BE交于O 不妨设∠CAB>=∠CBA
在OE上取一点M使∠OAN=∠OBD 连接AM并延长 交BC于N
所以△ADN相似于△BMN 因为BM=BN
所以∠NBA>=∠NAB=∠MAO+∠DAB=(∠CBA+∠CAB)/2所以∠CBA>=∠CAB
又因为假设∠CAB>=∠CBA所以∠CAB=∠CBA所以CA=CB 三角形为等腰三角形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式