求一个第二类曲面积分的解答 20
∫∫xydydz+yzdzdx+xzdxdy,其中S是坐标平面和x+y+z=1所为四面体表面的外侧?s是封闭的...
∫∫xydydz+yzdzdx+xzdxdy,其中S是坐标平面和x+y+z=1 所为四面体表面的外侧?
s是封闭的 展开
s是封闭的 展开
2个回答
展开全部
由于轮换对称性,对三个坐标平面上的积分面的第二类曲面积分值相等,不妨取左侧面对该积分计算:由于该面上的单位法向量为n=(0,-1,0) 带入积分有∫∫xydydz+yzdzdx+xzdxdy= -∫∫yzdS 其中
dS=dzdx 所以∫∫xydydz+yzdzdx+xzdxdy= -∫∫yzdzdx,化为二重积分,积分面为左侧面,带入y=0,
∫xydydz+yzdzdx+xzdxdy= -∫∫yzdzdx=0
再计算x+y+z=1面上的积分,由于轮换对称性,在该积分面上∫∫xydydz=∫∫yzdzdx=∫∫xzdxdy,则
∫∫xydydz+yzdzdx+xzdxdy=3∫∫xzdxdy 由于定向为正向,则由1-x-y=z带入得二重积分3∫∫xzdxdy=
3∫∫x(1-x-y)dxdy 积分面为xy坐标面上的0≤x≤1 0≤y≤1-x 最终计算值为1/8
dS=dzdx 所以∫∫xydydz+yzdzdx+xzdxdy= -∫∫yzdzdx,化为二重积分,积分面为左侧面,带入y=0,
∫xydydz+yzdzdx+xzdxdy= -∫∫yzdzdx=0
再计算x+y+z=1面上的积分,由于轮换对称性,在该积分面上∫∫xydydz=∫∫yzdzdx=∫∫xzdxdy,则
∫∫xydydz+yzdzdx+xzdxdy=3∫∫xzdxdy 由于定向为正向,则由1-x-y=z带入得二重积分3∫∫xzdxdy=
3∫∫x(1-x-y)dxdy 积分面为xy坐标面上的0≤x≤1 0≤y≤1-x 最终计算值为1/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询