以(1,-1)为中点的抛物线y²=8x的弦所在直线方程为: 要过程 .
1个回答
展开全部
与二元二次解析几何中点联系起来的问题常用点差法。根据题意,设出所求以(1,-1)为中点的弦所在直线与该抛物线的交点分别为(x1, y1), (x2,y2). 则根据抛物线方程可知,y1^2=8x1, y2^2=8x2; 两等式相减,得y1^2-y2^2=8(x1-x2).根据平方差公式,(y1+y2)(y1-y2)=8(x1-x2), 移项得,(y1-y2)/(x1-x2)=8/(y1+y2). 可知,等式左侧即为所求直线的斜率,设为k. 则,k=8/(y1+y2).又由于(x1, y1), (x2,y2)两点的中点为(1,-1), 则根据中点公式容易知道(y1+y2)/2=-1,则,y1+y2=-2,所以易知k=-4. 又由于中点(1,-1)也在该直线上,将该点代入直线方程y=kx+b,易得b=-5,则所求直线方程为y=4x-5.
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询