抛物线Y2=2px,过其焦点作倾斜角为60度的直线交抛物线于AB,且|AB|长为4,求抛物线方程!请详细点!

抛物线Y2=2px,过其焦点作倾斜角为60度的直线交抛物线于AB,且|AB|长为4,求抛物线方程!请详细点!... 抛物线Y2=2px,过其焦点作倾斜角为60度的直线交抛物线于AB,且|AB|长为4,求抛物线方程!请详细点! 展开
良驹绝影
2010-12-30 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
对于直线与圆锥曲线相交所得的弦长问题,基本上都是利用弦长公式,通过待定系数来求解的。由于本题的圆锥曲线比较特殊(抛物线,其离心率为1;角度为60°,是特殊角),还存在另外两种方法。
1、利用弦长公式,即|AB|=[根号(1+k²)]×|x1-x2|,其中,x1、x2是直线与圆锥曲线联立所得的方程组消去y后的关于x的一元二次方程的两根。
2、对于形如y²=2px形式的抛物线,若直线的倾斜角为α,则|AB|=|2P|/sin²α,这样可以求出P的值。
3、本题是否存在几何方法,供考虑。过A、B分别向准线作垂线,垂足分别为D、C,则四边形ABCD为直角梯形,且其上下底之和等于斜腰即为AB的长等于4,此直角梯形可以分割成矩形和直角三角形,且此直角三角形为30°、60°、90°,由此是否可以考虑求出p的值,你可以考虑下。
一般在高考说明中,基本上都采用第一种方法的。
zqs626290
2010-12-30 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:5827万
展开全部
【(1)一个结论:直线L过抛物线y²=2px的焦点F,且与其交于两点A,B.则|AB|=|2p|/sin²a.其中,角a是直线L的倾斜角。(2)该结论在做题时,可以直接应用。】解:由题设可知,|AB|=4,a=60º.∴由|AB|=|2p|/sin²a可得|2p|=|AB|sin²a=4×sin²60º=3.∴2p=±3.故抛物线方程为y²=±3x.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
7XIAOGUI
2010-12-30 · 超过11用户采纳过TA的回答
知道答主
回答量:79
采纳率:0%
帮助的人:31万
展开全部
复习抛物线知识..把直线求出;联方程;想信自己一定做出来!!!加油
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友bd079ac
2010-12-30 · TA获得超过4469个赞
知道大有可为答主
回答量:2688
采纳率:0%
帮助的人:2329万
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式