如图在三角形abc中角,c等于九十度,ac等于BC,过点c在三角形abc外作直线mn,am垂直mn
如图在三角形abc中角,c等于九十度,ac等于BC,过点c在三角形abc外作直线mn,am垂直mn于m,bn垂直mn于n,求证mn等于am加bn若过点c在三角形abc内作...
如图在三角形abc中角,c等于九十度,ac等于BC,过点c在三角形abc外作直线mn,am垂直mn于m,bn垂直mn于n,求证mn等于am加bn
若过点c在三角形abc内作直线mnam垂直mn于men垂直mn于n则ambn于mn之间有什么关系 展开
若过点c在三角形abc内作直线mnam垂直mn于men垂直mn于n则ambn于mn之间有什么关系 展开
展开全部
证明:(1)∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴Rt△DFB≌Rt△DAC.
∴BF=AC;
(2)在Rt△BEA和Rt△BEC中
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AE= 1/2AC.
又由(1),知BF=AC,
∴CE= 1/2AC= 1/2BF;
(3)CE<BG.
证明:连接CG.
∵△BCD是等腰直角三角形,
∴BD=CD
又H是BC边的中点,
∴DH垂直平分BC.∴BG=CG
在Rt△CEG中,
∵CG是斜边,CE是直角边,
∴CE<CG.
∴CE<BG.
∴△BCD是等腰直角三角形.
∴BD=CD.
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴Rt△DFB≌Rt△DAC.
∴BF=AC;
(2)在Rt△BEA和Rt△BEC中
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AE= 1/2AC.
又由(1),知BF=AC,
∴CE= 1/2AC= 1/2BF;
(3)CE<BG.
证明:连接CG.
∵△BCD是等腰直角三角形,
∴BD=CD
又H是BC边的中点,
∴DH垂直平分BC.∴BG=CG
在Rt△CEG中,
∵CG是斜边,CE是直角边,
∴CE<CG.
∴CE<BG.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询