如图,点E是正方形ABCD边BA延长线上一点(AE<AD),连接DE.与正方形ABCD的外接圆相交于点F,BF与AD相交

如图,点E是正方形ABCD边BA延长线上一点(AE<AD),连接DE.与正方形ABCD的外接圆相交于点F,BF与AD相交于点G.(1)求证:BG=DE;(2)若tan∠E... 如图,点E是正方形ABCD边BA延长线上一点(AE<AD),连接DE.与正方形ABCD的外接圆相交于点F,BF与AD相交于点G.(1)求证:BG=DE;(2)若tan∠E=2,BE= 6 2 ,求BG的长. 展开
 我来答
天臧mz54
推荐于2016-04-14 · TA获得超过134个赞
知道答主
回答量:186
采纳率:0%
帮助的人:132万
展开全部
(1)∵四边形ABCD是正方形,
∴∠DAB=90°,AD=AB
∵点E在BA的延长线上,


∴∠DAE=∠DAB=90°,
∴∠DAE=90°,
∴∠FDA=∠FBA,
在△DAE和△BAG中,
∠ADE=∠ABG
AD=AB
∠DAE=∠BAG

∴△DAE≌△BAG(ASA),
∴DE=BG;

(2)∵tan∠E=
AD
AE
=2,
∴AD=2AE,
∴EB=AB+AE=AD+AE=6
2

∴AD=2AE=2
2

∴BG=DE=
32+8
=2
10

答:∴BG为2
10
.(7分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式