如果不等式|x-a|+|x|<2没有实数解,则实数a的取值范围是______
展开全部
∵|x-a|+|x|<2,
∴|x-a|<2-|x|,
设y1=|x-a|,y2=2-|x|,
∴y1=
,y2=
,
根据原不等式没有实数解,即y1<y2没有实数解,从两函数图象可以看出:a≤-2或a≥2时,y1的图象在y2的图象下方.
故答案为a≤-2或a≥2.
∴|x-a|<2-|x|,
设y1=|x-a|,y2=2-|x|,
∴y1=
|
|
根据原不等式没有实数解,即y1<y2没有实数解,从两函数图象可以看出:a≤-2或a≥2时,y1的图象在y2的图象下方.
故答案为a≤-2或a≥2.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询