求幂级数的收敛域及函数
展开全部
收敛半径 R = lim<n→∞>a<n>/a<n+1> = lim<n→∞>n/(n+1) = 1
x = ±1 时均发散,收敛域 -1 < x < 1.
S(x) = ∑<n=1,∞>nx^n = ∑<n=1,∞>(n+1)x^n - ∑<n=1,∞>x^n
= [∑<n=1,∞>x^(n+1)]' - ∑<n=1,∞>x^n
= [x^2/(1-x)]' - x/(1-x) = (2x-x^2)/(1-x)^2 - (x-x^2)/(1-x)^2 = x/(1-x)^2
x = 1/2 时 得 S(1/2) = ∑<n=1,∞>n/2^n = (1/2)/(1/2)^2 = 2
x = ±1 时均发散,收敛域 -1 < x < 1.
S(x) = ∑<n=1,∞>nx^n = ∑<n=1,∞>(n+1)x^n - ∑<n=1,∞>x^n
= [∑<n=1,∞>x^(n+1)]' - ∑<n=1,∞>x^n
= [x^2/(1-x)]' - x/(1-x) = (2x-x^2)/(1-x)^2 - (x-x^2)/(1-x)^2 = x/(1-x)^2
x = 1/2 时 得 S(1/2) = ∑<n=1,∞>n/2^n = (1/2)/(1/2)^2 = 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询