函数定积分的绝对值为什么小于等于函数绝对值的定积分呀?

 我来答
高启强聊情感
高粉答主

2021-11-11 · 关注我不会让你失望
知道大有可为答主
回答量:5789
采纳率:100%
帮助的人:146万
展开全部

证明过程如下:

-|f(t)|《f(t)《|f(t)| 两边积分

- ∫|f(t)|dt《 ∫f(t)dt《 ∫|f(t)|dt

即:| ∫f(t)dt|《 ∫|f(t)|dt

如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

定积分

是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式