怎样证明a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca﹚
1个回答
展开全部
a^3+b^3+c^3-3abc =[( a+b)^3-3a^2b-3ab^2]+c^3-3abc =[(a+b)^3+c^3]-(3a^2b+3ab^2+3abc) =(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c) =(a+b+c)(a^2+b^2+2ab-ac-bc+c^2)-3ab(a+b+c) =(a+b+c)(a^2+b^2+c^2-ab-ac-bc) 用到二个公式:a^3+b^3=(a+b)(a^2-ab+b^2) (a+b)^3=a^3+b^3+3a^2b+3ab^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询