已知函数f(x)=loga1-m(x-2)/x-3(a>0,a不等于1),对界说域内的随意率性x都有f(2-x)+
已知函数f(x)=loga1-m(x-2)/x-3(a>0,a不等于1),对界说域内的随意率性x都有f(2-x)+f(2+x)=0成立(1)求实数m的值(2)当x属于(b...
已知函数f(x)=loga1-m(x-2)/x-3(a>0,a不等于1),对界说域内的随意率性x都有f(2-x)+f(2+x)=0成立(1)求实数m的值(2)当x属于(b,a)时,f(x)的取值局限恰为1到正无限,求实数a,b的值
展开
3个回答
展开全部
(1)解:
f(2-x)=loga[1-m(2-x-2)]/(2-x-3)=loga[1+mx)]/(-1-x)
f(2+x)=loga[1-m(2+x-2)]/(2+x-3)=loga[1-mx)]/(x-1)
f(2-x)+f(2+x)=0
即
loga[1-mx)]/(x-1)+ga[1+mx)]/(-1-x)=0
即longa[(1-m^2x^2)/(1-x^2)]=0
所以[(1-m^2x^2)/(1-x^2)]=1
解得m=±1
将m=±1带入f(x)发现m=1是f(x)不成立
故m=-1为所求
(2)解:
据题1解析知f(x)=loga[x-1]/(x-3)
因为当x∈(b,a),f(x)的取值范围恰为(1,+∞)
零界分析
即当x=a时,f(x)=+∞
将x=a带入原式得
(a-1)/(a-3)=a^+∞
推出a=3
同理将x=b,a=3带入原式
得到b=4
f(2-x)=loga[1-m(2-x-2)]/(2-x-3)=loga[1+mx)]/(-1-x)
f(2+x)=loga[1-m(2+x-2)]/(2+x-3)=loga[1-mx)]/(x-1)
f(2-x)+f(2+x)=0
即
loga[1-mx)]/(x-1)+ga[1+mx)]/(-1-x)=0
即longa[(1-m^2x^2)/(1-x^2)]=0
所以[(1-m^2x^2)/(1-x^2)]=1
解得m=±1
将m=±1带入f(x)发现m=1是f(x)不成立
故m=-1为所求
(2)解:
据题1解析知f(x)=loga[x-1]/(x-3)
因为当x∈(b,a),f(x)的取值范围恰为(1,+∞)
零界分析
即当x=a时,f(x)=+∞
将x=a带入原式得
(a-1)/(a-3)=a^+∞
推出a=3
同理将x=b,a=3带入原式
得到b=4
参考资料: http://zhidao.baidu.com/question/173487912.html?si=1
2011-01-06
展开全部
斯蒂芬速度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-01-08
展开全部
自己算
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询