已知关于x的一元二次方程x²+2(a-1)x+a²-7a-4=0的两根为x1,x2,且满足x1x2
1个回答
展开全部
关于x的一元二次方程x²+2(a-1)x+a²-7a-4=0的两根为x1,x2
那么Δ=4(a-1)²-4(a²-7a-4)≥0
解得a≥-1
根据韦达定理:
x1+x2=-2(a-1),x1x2=a²-7a-4
∵x1x2-3x1-3x2-2=0.
∴a²-7a-4+6(a-1)-2=0
∴a²-a-12=0
解得a=4或a=-3(不符合a≥-1舍去)
∴a=4
∴[1+4/﹙a²-4﹚]×(a+2)/a
=(1+4/12)×6/4
=2
那么Δ=4(a-1)²-4(a²-7a-4)≥0
解得a≥-1
根据韦达定理:
x1+x2=-2(a-1),x1x2=a²-7a-4
∵x1x2-3x1-3x2-2=0.
∴a²-7a-4+6(a-1)-2=0
∴a²-a-12=0
解得a=4或a=-3(不符合a≥-1舍去)
∴a=4
∴[1+4/﹙a²-4﹚]×(a+2)/a
=(1+4/12)×6/4
=2
追问
没学过韦达定理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询