如图5,点O是直线AB上的一点,∠COD=45°,OE,OF分别平分∠AOC和∠BOD,求∠EOF的度数
展开全部
分析:因为已知∠COD=45°,所以要求∠EOF,只要求∠EOC+∠DOF,因为OE、OF分别是∠AOC、∠DOB的角平分线,所以只要求出∠AOC与∠BOD的和即可解决问题.
解:∵∠AOC+∠COD+∠DOB=180°,且∠COD=45°,
∴∠AOC+∠DOB=180°-∠COD=135°.
∵OE、OF分别平分∠AOC与∠DOB
∴∠COE=∠AOC,∠DOF=∠DOB.
∴∠EOF=∠COE+∠DOF+∠COD
=∠AOC+∠DOB+∠COD=(∠AOC+∠DOB)+∠COD
=×135°+45°=112.5°.
解:∵∠AOC+∠COD+∠DOB=180°,且∠COD=45°,
∴∠AOC+∠DOB=180°-∠COD=135°.
∵OE、OF分别平分∠AOC与∠DOB
∴∠COE=∠AOC,∠DOF=∠DOB.
∴∠EOF=∠COE+∠DOF+∠COD
=∠AOC+∠DOB+∠COD=(∠AOC+∠DOB)+∠COD
=×135°+45°=112.5°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵∠AOC+∠COD+∠DOB=180°,且∠COD=45°,
∴∠AOC+∠DOB=180°-∠COD
=135°.
∵OE、OF分别平分∠AOC与∠DOB
∴∠COE=∠AOC,∠DOF=∠DOB.
∴∠EOF=∠COE+∠DOF+∠COD
=∠AOC+∠DOB+∠COD=(∠AOC+∠DOB)+∠COD
=×135°+45°=112.5°.
∴∠AOC+∠DOB=180°-∠COD
=135°.
∵OE、OF分别平分∠AOC与∠DOB
∴∠COE=∠AOC,∠DOF=∠DOB.
∴∠EOF=∠COE+∠DOF+∠COD
=∠AOC+∠DOB+∠COD=(∠AOC+∠DOB)+∠COD
=×135°+45°=112.5°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-01-08
展开全部
图呢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询