Sin(A+B)这个公式等于什么
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
2024-10-28 广告
两角和的正弦与余弦公式:
(1)sin(α+β)=sinαcosβ+cosαsinβ;
(2)cos(α+β)=cosαcosβ-sinαsinβ;
sin(α+β)=
cos(90°-α-β)
=cos[(90°-α)+(-β)]
=cos(90°-α)cos(-β)-
sin(90°-α)sin(-β)
=sinαcosβ+cosαsinβ
在解三角形中,有以下的应用领域:
已知三角形的两角与一边,解三角形。
已知三角形的两边和其中一边所对的角,解三角形。
运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。
物理学中,有的物理量可以构成矢量三角形 。因此, 在求解矢量三角形边角关系的物理问题时, 应用正弦定理,常可使一些本来复杂的运算,获得简捷的解答。
以上内容参考:百度百科-正弦定理
(1) sin(α+β)=sinαcosβ+cosαsinβ;
(2) cos(α+β)=cosαcosβ-sinαsinβ;
教材的思路是在直角坐标系的单位圆中,
根据两点间的距离公式推导:
cos(α+β)=cosαcosβ-sinαsinβ;
再用诱导公式证明: sin(α+β)=sinαcosβ+cosαsinβ;
如图所示:∠AOD=α,∠BOD=-β,∠AOC=β,∠DOC=β+α。
则B(cosβ,-sinβ);D(1,0);A(cosα,sinα);C[cos(α+β),sin(α+β)]。
∵ OA=OB=OC=OD=1
∴ CD=AB。
∵ CD2=[cos(α+β)-1] 2+[ sin(α+β)-0] 2;
=cos2(α+β)- 2cos(α+β)+1 + sin2(α+β);
=2-2 cos(α+β)。
AB2=(cosα-cosβ)2+ (sinα+sinβ)2;
=cos2α-2cosαcosβ+cos2β+sin2α+2sinαsinβ+ sin2β;
=2-2[cosαcosβ- sinαsinβ]。
∴ 2-2 cos(α+β)=2-2[cosαcosβ- sinαsinβ]。
∴ cos(α+β)=cosαcosβ- sinαsinβ
∴ sin(α+β)= cos(90°-α-β)
=cos[(90°-α)+(-β)]
=cos(90°-α)cos(-β)- sin(90°-α)sin(-β)
=sinαcosβ+cosαsinβ