定义在R上的偶函数fx满足f(2-x)=fx,且在[-3,2]上是减函数,a,b是钝角三角形的两个钝角

定义在R上的偶函数fx满足f(2-x)=fx,且在[-3,2]上是减函数,a,b是钝角三角形的两个钝角则f(sina)与f(cosb)的大小关系是Af(sina)>f(c... 定义在R上的偶函数fx满足f(2-x)=fx,且在[-3,2]上是减函数,a,b是钝角三角形的两个钝角
则f(sina)与f(cosb)的大小关系是 A f(sina)>f(cosb) B f(sina)< f(cosb) C f(sina)=f(cosb) D f(sina)》 f(cosb)
两个锐角。。。
展开
百度网友36a48cc
推荐于2016-01-16
知道答主
回答量:11
采纳率:0%
帮助的人:3.6万
展开全部
由已知偶函数f(x)满足f(2-x)=f(x),f(-x)=f(x)
所以f(x-2)=f(x),
可知道f(x)周期为2,
在【-3,-2】上是减函数,(我想你题目写错了,应该是【-3,-2】)
则在【2,3】单调增,(偶函数对称区间单调性相反)
则在【0,1】单调增
a、b是锐角三角形中两个锐角,
a+b<90
a<90-b
sina<sin(90-b)
得sina<cosb
故f(sinα)<f(cosb)
故选D
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式