如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向

如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向运动,形成如图2时,BF和CE还相等吗... 如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向运动,形成如图2时,BF和CE还相等吗?请说明你的结论和理由. 展开
 我来答
不灭皇朝44
推荐于2016-03-26 · TA获得超过804个赞
知道答主
回答量:138
采纳率:0%
帮助的人:143万
展开全部
解答:证明:(1)∵AD∥BC,
∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,
∵∠ABC=∠DCB,
∴∠BAD=∠CDA,
∵AE=DF,
∴AE+AD=DF+AD,
即AF=DE,
在△ABF和△DCE中,
AB=DC
∠BAD=∠CDA
AF=DE

∴△ABF≌△DCE(SAS),
∴BF=CE;

(2)相等.
在△ABC和△DCB中,
AB=DC
∠ABC=∠DCB
BC=CB

∴△ABC≌△DCB(SAS),
∴BF=CE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式