设f(x)在[a,b]上连续,且单调增加,证明tf(t)dt≥(a+b)/2f(t)dt(其中上下 5
令F(x)=∫(a,x)tf(t)dt-∫(a,x) (a+x)/2*f(t)dt
=∫(a,x)tf(t)dt-(a/2)∫(a,x)f(t)dt-(x/2)∫(a,x)f(t)dt
F'(x)=xf(x)-(a/2)f(x)-(1/2)∫(a,x)f(t)dt-(1/2)xf(x)
=(1/2)(x-a)f(x)-(1/2)∫(a,x)f(t)dt
=(1/2)∫(a,x)[f(x)-f(t)]dt
f(x)单调增,f(x)-f(t)>0,F'(x)>0,F(x)单调增
F(b)>F(a)
即原等式成立
常用的连续性的最根本定义是在拓扑学中的定义,在条目连续函数 (拓扑学)中会有详细论述。在序理论特别是域理论中,有从这个基础概念中得出的另一种抽象的连续性:斯科特连续性。
扩展资料
所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。
绝对值函数也是连续的。
定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。
非连续函数的一个例子是分段定义的函数。例如定义f为:f(x) = 1如果x> 0,f(x) = 0如果x≤ 0。取ε = 1/2,不存在x=0的δ-邻域使所有f(x)的值在f(0)的ε邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。
证∫(a,b)tf(t)dt≥∫(a,b) (a+b)/2*f(t)dt
令F(x)=∫(a,x)tf(t)dt-∫(a,x) (a+x)/2*f(t)dt
=∫(a,x)tf(t)dt-(a/2)∫(a,x)f(t)dt-(x/2)∫(a,x)f(t)dt
F'(x)=xf(x)-(a/2)f(x)-(1/2)∫(a,x)f(t)dt-(1/2)xf(x)
=(1/2)(x-a)f(x)-(1/2)∫(a,x)f(t)dt
=(1/2)∫(a,x)[f(x)-f(t)]dt
f(x)单调增,f(x)-f(t)>0,F'(x)>0,F(x)单调增
F(b)>F(a)
即原等式成立
提供一种很实用的方法
证∫(a,b)tf(t)dt≥∫(a,b) (a+b)/2*f(t)dt
令F(x)=∫(a,x)tf(t)dt-∫(a,x) (a+x)/2*f(t)dt
=∫(a,x)tf(t)dt-(a/2)∫(a,x)f(t)dt-(x/2)∫(a,x)f(t)dt
F'(x)=xf(x)-(a/2)f(x)-(1/2)∫(a,x)f(t)dt-(1/2)xf(x)
=(1/2)(x-a)f(x)-(1/2)∫(a,x)f(t)dt
=(1/2)∫(a,x)[f(x)-f(t)]dt
f(x)单调增,f(x)-f(t)>0,F'(x)>0,F(x)单调增
F(b)>F(a)
即原等式成立