初二一道数学题,关于几何证明的,急!!
(2)如图3,设平移距离D2D1为,PE为,请求出与的函数关系式,并写出自变量的取值范围.
设平移距离D2D1为x,PE为y 展开
(是这个图吗)(1)根据题意,易得∠C1=∠AFD2;进而可得C1D1=C2D2=BD2=AD1,又因为AD1=BD2,可得答案;
(2)因为在Rt△ABC中,AC=8,BC=6,所以由勾股定理,得AB=10;又因为C2D1=x,所以D1E=BD1=D2F=AD2=5-x,由图形可得阴影部分面积的组成,分别用x表示出其面积可得答案.
1、解肢薯缓(1)D1E=D2F,历模
∵C1D1‖C2D2,
∴∠C1=∠AFD2.
又∵∠ACB=90°,CD是斜边上的中线,
∴DC=DA=DB,即C1D1=C2D2=BD2=AD1,
∴∠C1=∠A,
∴∠AFD2=∠A,
∴AD2=D2F;
同理:BD1=D1E.
又∵AD1=BD2,
∴AD2=BD1.
∴D1E=D2F.
(2)∵在RtABC中,AC=8,BC=6,
∴由勾股定理,得AB=10,
即AD1=BD2=C1D1=C2D2=5;
又∵C2D1=x,
∴D1E=BD1=D2F=AD2=5-x,
∴C2F=C1E=x,
∵在△BC2D2中,C2到BD2的距离就是△ABC的AB边上的高为 ,△BC2D2的面积= 5× =12,
∴设△BED1的BD1边上的高为h,
∵C1D1‖C2D2,
∴△BC2D2∽△BED1,
∴ = ,
∴h= ,
∴△BED1的面积= BD1×h= × 手判= (5-x)2,
又∵∠C1+∠C2=90°,
∴∠FPC2=90°;
又∵∠C2=∠B,
∴△C2FP∽△BAC,
∴C2F:BA=PF:AC,
∴PC2= x,PF= x;
∴△C2FP的面积= x2,
故y=△BC2D2的面积-△BED1的面积-△C2FP的面积= x2+ x.(0≤x≤5)