怎么判断一复变函数是否解析

 我来答
百度网友a5592cc
高粉答主

2019-08-13 · 繁杂信息太多,你要学会辨别
知道答主
回答量:21
采纳率:100%
帮助的人:1.1万
展开全部

1、如果给出的函数形式是f(z)=u(x,y)+i*v(x,y),且u和v的形式比较和谐,那么直接根据柯西-黎曼方程来进行判断。

2、如果给出的函数形式是w=f(z)(表达式中只有z,没有x、y和其他自变量),而且f(z)的形式比较和谐,那么在定义域内都可以认为f(z)是解析的。

3、如果给出的函数形式是w=f(z,z')(其中z'是z的共轭),而没有其他变量,而且函数的形式比较和谐,那么这个函数在复平面上处处不解析。

如果要求函数f(z)在z0处是否解析,就要根据u和v的表达式,结合柯西-黎曼方程判断f(z)在z0附近(不包括z0)是否可导。如果可导,进一步通过定义法判断f(z)在z0点是否可导。若两次判断都满足可导条件,则f(z)在z0处解析。

扩展资料:

设ƒ(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称ƒ(z)在z处是可导的,此极限值称为ƒ(z)在z处的导数,记为ƒ'(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。

一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数(见解析函数)。所以复变函数导数的存在,对函数本身的结构有重大影响,而这些结果的研究,构成了一门学科──复变函数论。

参考资料来源:百度百科—复变函数

帐号已注销
推荐于2017-12-16 · TA获得超过4687个赞
知道小有建树答主
回答量:739
采纳率:100%
帮助的人:275万
展开全部

(1)如果给出的函数形式是f(z)=u(x,y)+i*v(x,y),且u和v的形式比较和谐,那么直接根据柯西-黎曼方程来进行判断。

(2)如果给出的函数形式是w=f(z)【表达式中只有z,没有x(即Rez)、y(即Imz)和其他自变量】,而且f(z)的形式比较和谐,那么在定义域内都可以认为f(z)是解析的。例如,若f(z)是关于z的有理函数,那么除了分母为0的点之外,在其他地方都是解析的;如果含有对数,那么还要剔除对数内的部分为0的情况。

(3)如果给出的函数形式是w=f(z,z')【其中z'是z的共轭】,而没有其他变量,而且函数的形式比较和谐,那么这个函数在复平面上处处不解析。

(4)如果给出的函数形式是这样的:

如果要求函数f(z)在z0处是否解析,就要根据u和v的表达式,结合柯西-黎曼方程判断f(z)在z0附近【不包括z0】是否可导。如果可导,进一步通过定义法判断f(z)在z0点是否可导。若两次判断都满足可导条件,则f(z)在z0处解析。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
林清他爹
2021-09-15 · TA获得超过3172个赞
知道小有建树答主
回答量:266
采纳率:100%
帮助的人:15.3万
展开全部
如果f(z)可导,那么f(z)就是"解析函数"
所以判断一个复变函数是否解析当然就是用复变函数导数的定义去判断这个函数是否可导。
还有一种方法,就是根据解析函数的充分必要条件:设f(z)=f(x+iy)=u(x,y)+iv(x,y),那么f(z)解析的充分必要条件为:1.u和v可微。2.u和v满足柯西黎曼关系。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2019-12-21 · TA获得超过5664个赞
知道大有可为答主
回答量:2.4万
采纳率:71%
帮助的人:1463万
展开全部
怎样判断一复变函数?是否解析你可以下一个数学的软件?这个软件会帮你分析很多的题和高等函数的问题,他都会帮你解析
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sungoddess22
高粉答主

2021-02-02 · 每个回答都超有意思的
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式