无理数指数幂及其运算性质

 我来答
luhan迷妹
2022-12-06 · TA获得超过350个赞
知道小有建树答主
回答量:1437
采纳率:100%
帮助的人:25万
展开全部

无理数指数幂及其运算性质如下:

首先我们来看这样一个问题:√2是无理数,我们应该怎样才能把它转化成我们可以利用的形式呢?答案是,没有办法。

但是,我们可以用别的方式来逼近它。人类在求π的近似值时所用过的方法,到这照样能用。事实上,我们知道√2的近似值,它是1.4142135623730950488016887242097······。于是我们可以通过分数指数幂来近似的计算无理数指数幂。

我们把1.41,1.414,1.4142,1.41421······称作√2的不足近似值,把1.42,1.415,1.4143,1.41422······称作√2的过剩近似值。然后我们能够计算出以5为底数,这些数字为指数的幂的值。

这样,我们已经得到了一长串5^√2的近似值了。事实证明,它是一个实数(只可惜你找不到它)。接下来,只需要根据所需的精确度来选取近似值即可。

一般地,无理数指数幂a^b(b是无理数且a>0)是一个实数,这意味着指数的概念又一次扩充,指数幂从有理数指数幂扩充到实数指数幂。 

无理数指数幂怎么计算?

1、常见的无理数有:(1)圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。

2、它是一个无理数,即无限不循环小数。

3、(2)e,作为数学常数,是自然对数函数的底数。

4、有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔 (John Napier)引进对数。

5、(3)黄金比例是一个定义为 (√5-1)/2的无理数。

6、 所被运用到的层面相当的广阔,例如:数学、物理、建筑、美术甚至是音乐。

7、(4)√2是一个无限不循环小数,√2是一个无理数,√2约为1.4142。

8、(5)√5是一个无限不循环小数,√5是一个无理数,√5约为2.236。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式