特征值相同,特征向量相同吗?

 我来答
电灯剑客
科技发烧友

2023-06-30 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4952万
展开全部

A和A^T的特征值相同,但特征向量不一定相同。

这虽然没错,但还有些相关的结论值得注意。


  1. 利用Jordan标准型容易验证A和A^T相似,特征值相同是直接推论。

    当然这一结论也可以用λI-A与λI-A^T相抵得到。



  2. A和A^T的特征向量并不是没有关系。

    为此我们先下一个定义:

    如果Ax=λx,x≠0,那么x称为A关于特征值λ的(右)特征向量;

    如果y^TA=λy^T, y≠0,那么y称为A关于特征值λ的左特征向量。

    显然y是A关于特征值λ的左特征向量<=>y是A^T关于特征值λ的右特征向量,

    注意这里的特征值是完全相同的。



    进一步,我们假定A可对角化,并且P^{-1}AP=Λ是对角阵,

    那么很明显P的列是A的右特征向量系,而从P^TA^TP^{-T}=Λ得到P^{-T}的列是A^T的右特征向量系,也就是A的左特征向量系。

    A不可对角化时特征向量会少一些,需要引进循环特征向量才能构成P,结论大体上是一样的。

    仅仅说“A和A^T的特征向量不一定相同”大致相当于“P和P^{-T}不是一回事”,这话虽然没错,但漏掉了很多有用的信息。


    作为简单的推论,我们可以得到:

    (1) 如果λ是A的单特征值,y和x分别是A关于λ的左右特征向量,那么y^Tx≠0;

    (2) 如果λ和μ是A的两个不同特征值,x是A关于λ的右特征向量,y是A关于λ的左特征向量,那么y^Tx=0。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式