教我几道小学奥数,像推理那种,求求了,题目随便
1个回答
展开全部
例题1:
小学奥数大雪过后,老师发现校门口积雪被人扫干净,问在场四位同学谁扫的:A说不是我扫的;B说是D扫的;C说是B扫的;D说B说的是假话。问谁说的真话。积雪时谁扫的
解答:
如果只有1个人说假话,其他都是真话
B说是D扫的,D说B说的是假话中一定有人说假话
如果D说假话,那么就是D扫的,C也就是说假话了,不合题意
所以是B扫的,B说假话,ACD说的是真话
例题2:
李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;
第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:
因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;
第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹.王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
例题3:
“迎春杯”数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖.甲说:“如果我能获奖,那么乙也能获奖.”乙说:“如果我能获奖,那么丙也能获奖.”丙说:“如果丁没获奖,那么我也不能获奖.”实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是___。
解答:
首先根据丙说的话可以推知,丁必能获奖.否则,假设丁没获奖,那么丙也没获奖,这与“他们之中只有一个人没有获奖”矛盾。
其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。
例题4:
有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的小明只从一只盒子里取出一个砝码,放到天平上称了一下,就把所有标签都改正过来了.你知道这是为什么吗?
解答:
解决本题的关键是确定打开哪只盒子:若打开标有“两个1克砝码”的盒子,则该盒的真实内容是“两个2克砝码”或“一个1克砝码,一个2克砝码”,当取出的是2克砝码时,就无法对其内容作出准确的判断.同样,打开标有“两个2克砝码”的盒子时,也会出现类似的情况.所以,应打开标有“一个1克砝码,一个2克砝码”的盒子.而它的真实内容应该是“两个1克砝码”或“两个2克砝码”。
①若取出的是1克砝码,则该盒一定装有两个1克砝码,从而标有“两个2克砝码”的盒子里,不可能是两个2克或两个1克的砝码,而只能是一个1克,一个2克的砝码了;标有“两个1克砝码”的盒子自然装有两个2克砝码。
②若取出的是2克砝码,同理可知,此盒装有两个2克砝码;标有“两个1克砝码”的盒子里实际上是一个1克和一个2克的砝码;标有“两个2克砝码”的盒子里实际上是两个1克砝码.
按以上的推理结果,小明就将全部标签改正过来了。
小学奥数大雪过后,老师发现校门口积雪被人扫干净,问在场四位同学谁扫的:A说不是我扫的;B说是D扫的;C说是B扫的;D说B说的是假话。问谁说的真话。积雪时谁扫的
解答:
如果只有1个人说假话,其他都是真话
B说是D扫的,D说B说的是假话中一定有人说假话
如果D说假话,那么就是D扫的,C也就是说假话了,不合题意
所以是B扫的,B说假话,ACD说的是真话
例题2:
李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;
第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:
因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;
第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹.王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
例题3:
“迎春杯”数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖.甲说:“如果我能获奖,那么乙也能获奖.”乙说:“如果我能获奖,那么丙也能获奖.”丙说:“如果丁没获奖,那么我也不能获奖.”实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是___。
解答:
首先根据丙说的话可以推知,丁必能获奖.否则,假设丁没获奖,那么丙也没获奖,这与“他们之中只有一个人没有获奖”矛盾。
其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。
例题4:
有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的小明只从一只盒子里取出一个砝码,放到天平上称了一下,就把所有标签都改正过来了.你知道这是为什么吗?
解答:
解决本题的关键是确定打开哪只盒子:若打开标有“两个1克砝码”的盒子,则该盒的真实内容是“两个2克砝码”或“一个1克砝码,一个2克砝码”,当取出的是2克砝码时,就无法对其内容作出准确的判断.同样,打开标有“两个2克砝码”的盒子时,也会出现类似的情况.所以,应打开标有“一个1克砝码,一个2克砝码”的盒子.而它的真实内容应该是“两个1克砝码”或“两个2克砝码”。
①若取出的是1克砝码,则该盒一定装有两个1克砝码,从而标有“两个2克砝码”的盒子里,不可能是两个2克或两个1克的砝码,而只能是一个1克,一个2克的砝码了;标有“两个1克砝码”的盒子自然装有两个2克砝码。
②若取出的是2克砝码,同理可知,此盒装有两个2克砝码;标有“两个1克砝码”的盒子里实际上是一个1克和一个2克的砝码;标有“两个2克砝码”的盒子里实际上是两个1克砝码.
按以上的推理结果,小明就将全部标签改正过来了。
参考资料: sername
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询