函数f(x)=x+1/x (1) 判断f(x)在区间(0,1] 和[1,正无穷)上的单调性 (2)求f(x)在[1/2,5]是的值域
2个回答
展开全部
1)取x1<x2
则f(x2)-f(x1)=(x2-x1)+(1/x2-1/x1) = (x2-x1)-(x2-x1)/x1x2=(x2-x1)(x1x2-1)/x1x2
当0<x1<x2<=1时
x2-x1>0,0<x1x2<1,则f(x2)-f(x1)<0,f(x1)>f(x2),f(x)是递减函数
当1<x1<x2时
x2-x1>0, x1x2>1,则f(x1)>f(x2),即f(x)是增函数
2)当1/2<=x<=1时,2=f(1)<=f(x)<=f(1/2)=5/2
当1<x<5时,2=f(1)<f(x)<f(5)=26/5
因为26/5>5/2
所以f(x)在[1/2,5]上的值域为[2,26/5]
则f(x2)-f(x1)=(x2-x1)+(1/x2-1/x1) = (x2-x1)-(x2-x1)/x1x2=(x2-x1)(x1x2-1)/x1x2
当0<x1<x2<=1时
x2-x1>0,0<x1x2<1,则f(x2)-f(x1)<0,f(x1)>f(x2),f(x)是递减函数
当1<x1<x2时
x2-x1>0, x1x2>1,则f(x1)>f(x2),即f(x)是增函数
2)当1/2<=x<=1时,2=f(1)<=f(x)<=f(1/2)=5/2
当1<x<5时,2=f(1)<f(x)<f(5)=26/5
因为26/5>5/2
所以f(x)在[1/2,5]上的值域为[2,26/5]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询