=x^2*sinx-200x*cosx-4950sinx
y=x^2*sinx
=x^2*sin(x+50π)+200x*sin(x+99π/2)+4950sin(x+49π)
=x^2*sinx-200x*cosx-4950sinx
从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。因此有必要研究高阶导数特别是任意阶导数的计算方法。
任意阶导数的计算
对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
y=x^2*sinx
y(100)=(sinx)(100)*x^2+C(100,1)*(sinx)(99)*(x^2)'+C(100,2)*(sinx)(98)*(x^2)''+0+...+0
=x^2*sin(x+50π)+200x*sin(x+99π/2)+4950sin(x+49π)
=x^2*sinx-200x*cosx-4950sinx
扩展资料
求极限基本方法有
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化;
3、运用两个特别极限;
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。