(2012?沙坪坝区模拟)如图,?ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1
(2012?沙坪坝区模拟)如图,?ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠FA...
(2012?沙坪坝区模拟)如图,?ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;(2)求证:AF=CD+CF.
展开
1个回答
展开全部
解答:(1)解:∵∠D=105°,∠DAF=35°,
∴∠DFA=180°-∠D-∠DAF=40°(三角形内角和定理).
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD(平行四边形对边平行且相等).
∴∠DFA=∠FAB=40°(两直线平行,内错角相等);
∵∠DFA=2∠BAE(已知),
∴∠FAB=2∠BAE(等量代换).
即∠FAE+∠BAE=2∠BAE.
∴∠FAE=∠BAE;
∴2∠FAE=40°,
∴∠FAE=20°;
(2)证明:在AF上截取AG=AB,连接EG,CG.
∵∠FAE=∠BAE,AE=AE,
∴△AEG≌△AEB.
∴EG=BE,∠B=∠AGE;
又∵E为BC中点,∴CE=BE.
∴EG=EC,∴∠EGC=∠ECG;
∵AB∥CD,∴∠B+∠BCD=180°.
又∵∠AGE+∠EGF=180°,∠AGE=∠B,
∴∠BCF=∠EGF;
又∵∠EGC=∠ECG,
∴∠FGC=∠FCG,∴FG=FC;
又∵AG=AB,AB=CD,
∴AF=AG+GF=AB+FC=CD+FC.
∴∠DFA=180°-∠D-∠DAF=40°(三角形内角和定理).
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD(平行四边形对边平行且相等).
∴∠DFA=∠FAB=40°(两直线平行,内错角相等);
∵∠DFA=2∠BAE(已知),
∴∠FAB=2∠BAE(等量代换).
即∠FAE+∠BAE=2∠BAE.
∴∠FAE=∠BAE;
∴2∠FAE=40°,
∴∠FAE=20°;
(2)证明:在AF上截取AG=AB,连接EG,CG.
∵∠FAE=∠BAE,AE=AE,
∴△AEG≌△AEB.
∴EG=BE,∠B=∠AGE;
又∵E为BC中点,∴CE=BE.
∴EG=EC,∴∠EGC=∠ECG;
∵AB∥CD,∴∠B+∠BCD=180°.
又∵∠AGE+∠EGF=180°,∠AGE=∠B,
∴∠BCF=∠EGF;
又∵∠EGC=∠ECG,
∴∠FGC=∠FCG,∴FG=FC;
又∵AG=AB,AB=CD,
∴AF=AG+GF=AB+FC=CD+FC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询