如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP
如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,...
如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E. (1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当 ,BP′= 时,求线段AB的长.
展开
ら何德何能73
推荐于2017-10-09
·
超过64用户采纳过TA的回答
知道答主
回答量:107
采纳率:100%
帮助的人:119万
关注
解:(1)证明:∵AP′是AP旋转得到,∴AP=AP′。∴∠APP′=∠AP′P。 ∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°。 又∵∠BPC=∠APP′(对顶角相等)。∴∠CBP=∠ABP。 (2)证明:如图,过点P作PD⊥AB于D, ∵∠CBP=∠ABP,∠C=90°,∴CP=DP。 ∵P′E⊥AC,∴∠EAP′+∠AP′E=90°。 又∵∠PAD+∠EAP′=90°, ∴∠PAD=∠AP′E。 在△APD和△P′AE中, ∵ , ∴△APD≌△P′AE(AAS)。∴AE=DP。∴AE=CP。 (3)∵ ,∴设CP=3k,PE=2k,则AE=CP=3k,AP′=AP=3k+2k=5k。 在Rt△AEP′中, , ∵∠C=90°,P′E⊥AC,∴∠CBP+∠BPC=90°,∠EP′P+∠P′PE=90°。 ∵∠BPC=∠EPP′(对顶角相等),∴∠CBP=∠P′PE。 又∵∠BAP′=∠P′EP=90°,∴△ABP′∽△EPP′。 ∴ 。即 。∴ 。 在Rt△ABP′中, ,即 。 解得AB=10 |
试题分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可。 (2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证。 (3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出 ,然后在Rt△ABP′中,利用勾股定理列式求解即可。 |
收起
为你推荐: