设x,y是实数,且x^2+xy+y^2=1,求x^2-xy+y^2的取值范围 用换元法计算!
6个回答
展开全部
x^2-xy+y^2=x^2+xy+y^2-2xy=1-2xy
x^2+xy+y^2=1 ≥3xy
xy ≤1/3
-2xy≥-2/3,
x^2-xy+y^2=x^2+xy+y^2-2xy=1-2xy≥1/3
当且仅当 x=y时取等号
x^2+xy+y^2=1 ≥3xy
xy ≤1/3
-2xy≥-2/3,
x^2-xy+y^2=x^2+xy+y^2-2xy=1-2xy≥1/3
当且仅当 x=y时取等号
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^2-xy+y^2=x^2+xy+y^2-3xy=1-3xy
x^2+xy+y^2=1
xy=1-x^2-y^2
x^2+y^2=1-xy
因为x^2+y^2≥2xy
所以x^2+y^2=1-xy≥2xy
1-3xy≥0
x^2-xy+y^2的取值范围为x^2-xy+y^2≥0
x^2+xy+y^2=1
xy=1-x^2-y^2
x^2+y^2=1-xy
因为x^2+y^2≥2xy
所以x^2+y^2=1-xy≥2xy
1-3xy≥0
x^2-xy+y^2的取值范围为x^2-xy+y^2≥0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
领a=x^2+y^2,b=xy
则a>=2b
1=x^2+xy+y^2=a+b>=3b
b<=1/3
x^2-xy+y^2=a-b>=2b-b=b=1/3
这题目有必要一定要用换元吗?
则a>=2b
1=x^2+xy+y^2=a+b>=3b
b<=1/3
x^2-xy+y^2=a-b>=2b-b=b=1/3
这题目有必要一定要用换元吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设x+y=a xy=b,于是有a²≥4b
那么x^2+xy+y^2=a²-b=1,a²=1+b
1+b≥4b,b≤1/3
x^2-xy+y^2=a²-3b=1-2b≥1/3
那么x^2+xy+y^2=a²-b=1,a²=1+b
1+b≥4b,b≤1/3
x^2-xy+y^2=a²-3b=1-2b≥1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^2+xy+y^2=1可以得出
(x+y)^2=1+xy--------------1式;
(x-y)^2=1-3xy;
可以得出1/3>=xy>=-1-----2式
x^2-xy+y^2=(x+y)^2-3xy=1-2xy(注意将1式和2式代入)
1-2xy的范围就是[1/3,3]
哈哈,希望有所帮助
(x+y)^2=1+xy--------------1式;
(x-y)^2=1-3xy;
可以得出1/3>=xy>=-1-----2式
x^2-xy+y^2=(x+y)^2-3xy=1-2xy(注意将1式和2式代入)
1-2xy的范围就是[1/3,3]
哈哈,希望有所帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询