已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点

已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不... 已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程). 展开
 我来答
Z竬忔
推荐于2017-09-24 · 超过66用户采纳过TA的回答
知道答主
回答量:136
采纳率:50%
帮助的人:127万
展开全部
(1)设抛物线的解析式y=a(x+1)(x-2),
∵-2=a×1×(-2),
∴a=1,
∴y=x 2 -x-2,其顶点坐标是(
1
2
,-
9
4
);

(2)设线段BM所在的直线的解析式为:y=kx+b(k≠0),
点N的坐标为N(h,-t),
0=2k+b
-
9
4
=
1
2
k+b

解它们组成的方程组得:
k=
3
2
b=-3

所以线段BM所在的直线的解析式为:y=
3
2
x-3,
N点纵坐标为:-t,
∴-t=
3
2
h-3,
∴h=2-
2
3
t,
其中
1
2
<h<2,
∴s=
1
2
×1×2+
1
2
(2+t)(2-
2
3
t)=-
1
3
t 2 +
1
3
t+3,
∴s与t间的函数解析式为,
s=-
1
3
t 2 +
1
3
t+3,
∵M点坐标是(
1
2
,-
9
4
);
∴QN最大值为:
9
4

∴自变量的取值围是: 0<t<
9
4


(3)存在符合条件的点P,且坐标是:P 1
5
2
7
4
),P 2
3
2
,-
5
4
).
设点P的坐标为P(m,n),则 n=m 2 -m-2,PA 2 =(m+1) 2 +n 2
PC 2 =m 2 +(n+2) 2 ,AC 2 =5,
分以下几种情况讨论:
(ⅰ)若∠ACP=90°则AP 2 =PC 2 +AC 2
可得:m 2 +(n+2) 2 +(m+1) 2 +n 2 =5,
解得: m 1 =
5
2
,m 2 =-1(舍去).
所以点P(
5
2
7
4

(ⅱ)若∠PAC=90°,则PC 2 =PA 2 +AC 2
∴n=m 2 -m-2
(m+1) 2 +n 2 =m 2 +(n+2) 2 +5
解得: m 3 =
3
2
,m 4 =0(舍去).所以点P(
3
2
,-
5
4
).
(ⅲ)由图象观察得,当点P在对称轴右侧时,PA>AC,所以边AC的对角∠APC不可能是直角.

(4)以点O,点A(或点O,点C)为矩形的两个顶点,第三个顶点落在矩形这一边OA(或边OC)的对边上,
如图,此时未知顶点坐标是点P(-1,-2),以点A,点C为矩形的两顶点,
第三个顶点落在矩形这一边AC的对边上,
如图,此时未知顶点坐标是P 1 (-1,-2),P 2 (-
1
5
2
5
)或
4
5
,-
8
5
).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式