已知f(x)等于x^3+ax^2+bx+c,当x等于-1时,f(x)的极大值为7,x等于3时,f(x)有极小值。a,b,c的值。函数
3个回答
展开全部
f(x)= x^3+ax^2+bx+c
f'(x) = 3x^2+ 2ax+b
f'(-1) =0
=> 3 - 2a + b = 0
b = 2a-3 (1)
f'(3) =0
27 +6a + b = 0
b = -27-6a (2)
from (1) and (2)
2a-3 = -27-6a
8a = -24
a = -3
b = 2(-3) -3 = -9
f(x) = x^3-3 x^2-9x+ c
f(-1) = -1 -3 + 9 + c = 7
=> c = 2
f(x) = x^3-3x^2-9x+ 2
f(3) = 27 - 27 - 27 + 7
= -20
f'(x) = 3x^2+ 2ax+b
f'(-1) =0
=> 3 - 2a + b = 0
b = 2a-3 (1)
f'(3) =0
27 +6a + b = 0
b = -27-6a (2)
from (1) and (2)
2a-3 = -27-6a
8a = -24
a = -3
b = 2(-3) -3 = -9
f(x) = x^3-3 x^2-9x+ c
f(-1) = -1 -3 + 9 + c = 7
=> c = 2
f(x) = x^3-3x^2-9x+ 2
f(3) = 27 - 27 - 27 + 7
= -20
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:由题意得
f'(x)=3x^2+2ax+b
则有f(-1)=7 a=-3
f'(-1)=0 解得 b=-9
f'(3)= 0 c=-5
f'(x)=3x^2+2ax+b
则有f(-1)=7 a=-3
f'(-1)=0 解得 b=-9
f'(3)= 0 c=-5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询