若幂级数anx^n在x=3处条件收敛.则其收敛半径为多少

 我来答
牛牛爱教育
高粉答主

2021-07-24 · 我是教育小达人,乐于助人; 专注于分享科
牛牛爱教育
采纳数:900 获赞数:105776

向TA提问 私信TA
展开全部

收敛半径为3。

解析过程如下:

收敛半径r是一个非负的实数或无穷大,使得在 | z -a| < r时幂级数收敛,在 | z -a| > r时幂级数发散。

幂级数在|x|<R时绝对收敛,|x|>R时发散,所以条件收敛只可能出现在|x|=R处,所以本题的收敛半径是3。

收敛半径求法

根据根值审敛法,则有柯西-阿达马公式。或者,复分析中的收敛半径将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。

最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此。例如:函数没有复根。它在零处的泰勒展开为:运用达朗贝尔审敛法可以得到它的收敛半径为1。

TableDI
2024-07-18 广告
仅需3步!不写公式自动完成Excel vlookup表格匹配!Excel在线免,vlookup工具,点击16步自动完成表格匹配,无需手写公式,免费使用!... 点击进入详情页
本回答由TableDI提供
帷帷环游记
高粉答主

2020-06-22 · 开心之余可以了解网络的新鲜事
帷帷环游记
采纳数:179 获赞数:15320

向TA提问 私信TA
展开全部

收敛半径r是一个非负的实数或无穷大,使得在 | z -a| < r时幂级数收敛,在 | z -a| > r时幂级数发散。

幂级数在|x|<R时绝对收敛,|x|>R时发散;

所以条件收敛只可能出现在|x|=R处;

所以本题的收敛半径是3。

扩展资料

根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:

 是正实数时,R= ;

 = 0时,R= ;

 = 时,R=0。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hxzhu66
高粉答主

推荐于2017-11-22 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:96%
帮助的人:1.1亿
展开全部
你好!幂级数在|x|<R时绝对收敛,|x|>R时发散,所以条件收敛只可能出现在|x|=R处,所以本题的收敛半径是3。经济数学团队帮你解答,请及时采纳。谢谢!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式