求这个无穷积分

 我来答
尹六六老师
2016-11-07 · 知道合伙人教育行家
尹六六老师
知道合伙人教育行家
采纳数:33773 获赞数:147242
百强高中数学竞赛教练, 大学教案评比第一名, 最受学生欢迎教

向TA提问 私信TA
展开全部
sin(tx)/x=∫(0→1)sin(tx)dt
所以,
∫(0→+∞)e^(-x)·sin(tx)/x·dx
=∫(0→+∞)e^(-x)·[∫(0→1)sin(tx)dt]·dx
=∫(0→1)dt∫(0→+∞)e^(-x)·sin(tx)·dx
=∫(0→1)t/(1+t²)dt
=1/2·ln(1+t²) |(0→1)
=1/2·ln2

【附注】内层积分的计算
∫(0→+∞)e^(-x)·sin(tx)·dx
=-∫(0→+∞)sin(tx)·d[e^(-x)]
=-e^(-x)sin(tx) |(0→+∞)
+∫(0→+∞)e^(-x)·tcos(tx)·dx
=0+∫(0→+∞)e^(-x)·tcos(tx)·dx
=-∫(0→+∞)tcos(tx)·d[e^(-x)]
=-e^(-x)·tcos(tx) |(0→+∞)
-∫(0→+∞)e^(-x)·t²sin(tx)·dx
=t-t²∫(0→+∞)e^(-x)·sin(tx)·dx

移项可得:
(1+t²)∫(0→+∞)e^(-x)·sin(tx)·dx=t
∴∫(0→+∞)e^(-x)·sin(tx)·dx=t/(1+t²)
追问
谢谢
追答
前面打错了,更正一下
sin(tx)/x=∫(0→t)cos(xy)dy
所以,
∫(0→+∞)e^(-x)·sin(tx)/x·dx
=∫(0→+∞)e^(-x)·[∫(0→t)cos(xy)dy]·dx
=∫(0→t)dy∫(0→+∞)e^(-x)·cos(xy)·dx
=∫(0→t)1/(1+y²)dy
=arctany |(0→t)
=arctant

【附注】内层积分的计算
∫(0→+∞)e^(-x)·cos(xy)·dx
=-∫(0→+∞)cos(xy)·d[e^(-x)]
=-e^(-x)cos(xy) |(0→+∞)
-∫(0→+∞)e^(-x)·ysin(xy)·dx
=1-∫(0→+∞)e^(-x)·ysin(xy)·dx
=1+∫(0→+∞)ysin(xy)·d[e^(-x)]
=1+e^(-x)·ysin(xy) |(0→+∞)
-∫(0→+∞)e^(-x)·y²cos(xy)·dx
=1-y²∫(0→+∞)e^(-x)·cos(xy)·dx

移项可得:
(1+y²)∫(0→+∞)e^(-x)·cos(xy)·dx=1
∴∫(0→+∞)e^(-x)·cos(xy)dx=1/(1+y²)
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式