为什么特征向量正交化并单位化后仍为原矩阵的特征向量
1、因为特征向量的正交化是局限在同一特征值的特征向量,特征向量是对应齐次线性方程组的解,所以特征向量的非零线性组合仍是特征向量。正交化所得向量与原向量等价,所以仍是特征向量,由此可知单位化后也是特征向量。
2、特征向量定理:
谱定理在有限维的情况,将所有可对角化的矩阵作了分类:它显示一个矩阵是可对角化的,当且仅当它是一个正规矩阵。注意这包括自共轭(厄尔米特)的情况。这很有用,因为对角化矩阵T的函数f(T)(譬如波莱尔函数f)的概念是清楚的。
在采用更一般的矩阵的函数的时候谱定理的作用就更明显了。例如,若f是解析的,则它的形式幂级数,若用T取代x,可以看作在矩阵的巴拿赫空间中绝对收敛。谱定理也允许方便地定义正算子的唯一的平方根。
扩展资料:
1、共轭特征向量:
一个共轭特征向量或者说共特征向量是一个在变换下成为其共轭乘以一个标量的向量,其中那个标量称为该线性变换的共轭特征值或者说共特征值。共轭特征向量和共轭特征值代表了和常规特征向量和特征值相同的信息和含义,但只在使用交替坐标系统的时候出现。
例如,在相干电磁散射理论中,线性变换A代表散射物体施行的作用,而特征向量表示电磁波的极化状态。在光学中,坐标系统按照波的观点定义,称为前向散射对齐 (FSA),从而导致了常规的特征值方程,而在雷达中,坐标系统按照雷达的观点定义,称为后向散射对齐 (BSA),从而给出了共轭特征值方程。
2、特征问题:
一个广义特征值问题(第二种意义)有如下形式
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解如下方程得到
形如A − λB的矩阵的集合,其中λ是一个复数,称为一个“铅笔”。 若B可逆,则最初的问题可以写作标准的特征值问题。但是,在很多情况下施行逆操作是不可取的,而广义特征值问题应该如同其原始表述来求解。
如果A和B是实对称矩阵,则特征值都为实数。这在上面的第二种等价表述中并不明显,因为矩阵B − 1A未必是对称的。
参考资料来源:百度百科 - 特征向量
因为特征向量的正交化是局限在同一特征值的特征向量,特征向量是对应齐次线性方程组的解,所以特征向量的非零线性组合仍是特征向量。正交化所得向量与原向量等价,所以仍是特征向量,由此可知单位化后也是特征向量。
特征向量定理
谱定理在有限维的情况,将所有可对角化的矩阵作了分类:它显示一个矩阵是可对角化的,当且仅当它是一个正规矩阵。注意这包括自共轭(厄尔米特)的情况。这很有用,因为对角化矩阵T的函数f(T)(譬如波莱尔函数f)的概念是清楚的。
在采用更一般的矩阵的函数的时候谱定理的作用就更明显了。例如,若f是解析的,则它的形式幂级数,若用T取代x,可以看作在矩阵的巴拿赫空间中绝对收敛。谱定理也允许方便地定义正算子的唯一的平方根。
扩展资料
特征值和特征向量的应用
(1)可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中。例如,在力学中,惯量的特征向量定义了刚体的主轴。惯量是决定刚体围绕质心转动的关键数据;
(2)数学生态学家用来预测原始森林遭到何种程度的砍伐,会造成猫头鹰的种群灭亡;
(3)著名的图像处理中的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法,还有图像压缩的K-L变换。再比如很多人脸识别,数据流模式挖掘分析等方面。
(4)在谱系图论中,一个图的特征值定义为图的邻接矩阵A的特征值,或者(更多的是)图的拉普拉斯算子矩阵,Google的PageRank算法就是一个例子。
参考资料来源:百度百科-特征向量
因为特征向量是对应齐次线性方程组的解
所以特征向量的非零线性组合仍是特征向量
正交化所得向量与原向量等价
所以仍是特征向量
由此可知单位化后也是特征向量
那么对于λ1的任何特征向量x1和λ2的任何特征向量x2总满足x1^tx2=0
也就是说不同特征值对应的特征向量永远是正交的,正交化过程不会改变这条性质
而对于一个重特征值对应的多个特征向量,不管怎么做正交缉唬光舅叱矫癸蝎含莽化还是特征向量