求x^2/根号下1-x^2的不定积分
展开全部
令x=sinz,dx=cosz dz,cosz=√(1-x²)
∫ x²/√(1-x²) dx = ∫ sin²z*cosz/√(1-sin²z) dz
= ∫ sin²z*cosz/cosz dz
= ∫ sin²z dz
= (1/2)∫ (1-cos2z) dz
= (1/2)(z-1/2*sin2z) + C
= (1/2)z-1/2*sinz*cosz + C
= (1/2)arcsinx - 1/2*x*√(1-x²) + C
= (1/2)[arcsinx - x√(1-x²)] + C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询