数列极限的定义中的问题
数列极限定义中说,存在正整数N,当n>N时,不等式|xn-a|<ε成立,就是说n最小为2时,不等式成立。如果我把ε取的很大时,使n=1时,不等式也成立,这样不行吗?...
数列极限定义中说,存在正整数N,当n>N时,不等式|xn - a| < ε 成立,就是说n最小为2时,不等式成立。
如果我把ε 取的很大时,使n = 1时,不等式也成立,这样不行吗? 展开
如果我把ε 取的很大时,使n = 1时,不等式也成立,这样不行吗? 展开
2个回答
展开全部
解答:
1、N是项数。是我们解出来的项数,从这一项(第n项)起,它后面的每一项
的值与极限值之差的绝对值小于任何一个给定的数(ε)。
2、由于ε是任给的一个很小的数,N是据此算出的数。可能从第N项起,也可
能从它后面的项起,数列的每一项之值与极限值之差的绝对值小于ε。
ε是理论上假设的数,N是理论上存在的对应于ε的数,ε可以任意的小,从
而抽象的证明了数列的极限。
3、你说限制n〉N行,你说它是一种严格的抽象理论的递推方式,那就更恰当
了。 事实上,在递推证明的过程中,各人采取的方式可能不一样,也许你
是n>N,而有人是n>N+1, 有人是n〉N-1,有人是n〉N+2,.....都是可能的
正确答案。
我们不拘泥于具体的N,而是侧重于证明时所使用的思想是否正确。
1、N是项数。是我们解出来的项数,从这一项(第n项)起,它后面的每一项
的值与极限值之差的绝对值小于任何一个给定的数(ε)。
2、由于ε是任给的一个很小的数,N是据此算出的数。可能从第N项起,也可
能从它后面的项起,数列的每一项之值与极限值之差的绝对值小于ε。
ε是理论上假设的数,N是理论上存在的对应于ε的数,ε可以任意的小,从
而抽象的证明了数列的极限。
3、你说限制n〉N行,你说它是一种严格的抽象理论的递推方式,那就更恰当
了。 事实上,在递推证明的过程中,各人采取的方式可能不一样,也许你
是n>N,而有人是n>N+1, 有人是n〉N-1,有人是n〉N+2,.....都是可能的
正确答案。
我们不拘泥于具体的N,而是侧重于证明时所使用的思想是否正确。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询